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VJIK 539.3

Discrete singularities method in problems of seismic and impulse
Impacts on reservoirs

D. V. Krutchenko®, E. A. Strelnikova®?, Yu. S. Shuvalova®

Hucmumym npobaem mawunocmpoenusa um. A.H.Iloocopnozo HAHY, Yxpauna,
Xapvrosckuti nayuonanvuviti ynueepcumem um. B.H. Kapasuna
Ykpaunckuii cocyoapcmeennviii ynusepcumem sicenesHo00pOoICHO20 MPAHCHOPMA

A numerical method is proposed to simulate impulse and seismic effects on storage
with a liquid. The liquid is supposed to be ideal, incompressible, and its current is
irrotational. The fluid pressure satisfies the Cauchy-Lagrange integral. To determine it,
we obtain a system of integral equations. Its numerical solution is obtained by the
method of boundary elements. The eigenvalues and forms of fluid vibrations are
obtained. The proposed method made it possible to estimate the level of the free
surface at a sudden applied load.

Key words: pesepeyapsl ¢ orcudkocmolo, mMemoo UHMEZPATbHbIX YPAGHEeHUll, CE0000HbIe U
BbIHYIICOEHHbLE KOeOaHUs

IIpennoskeH YHUCICHHBIH METO, Il MOAEIUPOBAHUS UMITYIECHOTO U CEHCMUYECKOTO
BO3JCHCTBUSI Ha XpaHWIMINA C JKUAKOCTBIO. Ilpenmomaraercs 4YTO JKHIAKOCTH
ujeanbHas, HeCKHMMaeMas, a e€ TedeHHe Oe3BuUxpeBoe. JlaBIeHHE XHUIKOCTU
ynosieTrBopsier uHTerpany Komm-Jlarpanxka. s ero ompenesneHus IOlydeHa
CHUCTEMa HHTErpallbHbIX ypaBHeHUHl. EE uucieHHoe pelleHHe MOIYy4eHO METOAOM
TPaHNYHBIX 3JeMeHTOB. IlomydeHsl cOOCTBeHHBIC 3HaueHHST W (HOPMBI KoJeOaHW
JKUIKOCTH. [Ipe/UIoKEeHHBI METOJl IO3BOJIMJI OLCHUTH YPOBEHb CBOOOIHOU
MIOBEPXHOCTHU TIPH BHE3AIHO MIPUI0KEHHOH Harpyske.

Kniouesvte cnosa. pezepsyapbvi ¢ JCUOKOCHbIO, MEMOO UHMESPANbHBIX YPAGHEHUL, C80000HbIE U
BbIHYIHCOEHHbIE KONIeOAHUs

3anmponoHOBaHO YMCENBHUI METOJ IS MOJCIIOBAHHS IMITYNbCYy 1 celicMiyHOI nii Ha
cxoBHIIa 3 pimuHOIO. IIpummyckaeThes, MO pilTuHA igeaidbHA, HECTUCIMBA, a ii PyX €
6e3BuxpoBuM. Tuck piguHM 3anoBoibHse iHTerpamy Komri-Jlarpamxka. [{ns #oro
BU3HAYEHHS OTPHMAHA CHCTEMa iHTErpaIbHUX PiBHAHb. 1i UMCENbHUE PO3B’A30K
OTPUMAaHO METOJIOM TpaHMYHMX eleMeHTiB. OTpUMaHO BacHi 3Ha4yeHHA 1 Gopmu
KOJIMBaHb PiIVHHU. 3arnporOHOBAaHMII METOA JI03BOJMB BHU3HAYHMTH PIBEHb BLIBHOT
MOBEPXHI MIPU PANTOBO MPHUKIAIEHOMY HaBaHTaKECHHI.

Knouosi cnosa’. pesepgyapol ¢ sHuOkocmvio, MEmood UHMESPALbHbIX YPAGHEHUll, c60000HbIe U
BbIHYIICOEHHbIE KOeOaHUs

1. Problem statement and its topicality

Containers and tanks for storage of oil, flammable and poisonous liquids are
widely used in various fields of engineering practice, such as aircraft industry,
chemical and oil and gas industry, power engineering, transport. These tanks usually
operate at raised technological loadings and they are filled with oil, flammable or toxic
agents. As a result of sudden action of earthquakes, shockwaves, other force majeur
circumstances the liquid stored in tanks may be exposed to intensive sloshing.

Sloshing is a phenomenon observed in a number of industrial facilities: in
containers for storage of the liquefied gas, oil, fuel tanks, in tanks of cargo tankers. It
is known that partially filled tanks are affected by especially intensive sloshing. It can
lead to high pressure on tank walls, to destruction of structures or loosing stability, and
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to leakage of dangerous contents, that in turn, can lead to serious ecological
consequences.

The analysis of research devoted to the problems of liquid sloshing in tanks is
given in R. A. Ibrahim's works [1,2]. Note also the works devoted to liquid sloshing in
cylindrical tanks under seismic loadings [3-5].

In this paper the problem concern with liquid vibrations in a shell of revolution is
considered. We designate a moistened shell surface by S;, and a free surface by S,.
Suppose the Cartesian coordinate system 0xyz is connected with the shell, the liquid

free surface S, coincides with the xOy plane at the state of rest (fig. 1)
I A
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Fig. 1. Fluid-filled cylindrical shell and its sketch.

Suppose that liquid is ideal and incompressible one and its movement started from
the state of rest is irrotational. Then there exist a liquid velocity potential ©
VX:aE,Vy:aE’VZ:aE’
OX oy oz
satisfying to Laplace's equation.
We determine pressure p upon shell walls from the linearized Cauchy-Lagrange's
integral by the following formula

oD
p =—p.(5+ 92]+ p, +a.(t)x,

Here @ is the velocity potential, g is the acceleration of gravity, z is a point vertical
coordinate in the liquid, p; is the liquid density, po is an atmospheric pressure, ag (t) is
a function characterizing external influence (a horizontal seism or an impulse).

On the free surface of liquid the following conditions have to be satisfied:

oo o
— == p—polg =0,
an s ot p p0|50
0
where the function ¢ describes the form and location of the free surface.
Thus, for the potential we have the following boundary problem
oD LoD o,

2 od
Veo=0; —| =0;— —; - =0; —+9C+a/(t)x] =0.
on (S on S, ot P IOO|30 ot 9 ()
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Having determined the velocity potential @ and the functionZ, we establish height
of raising of the free surface and determine the liquid pressure upon shell walls.

2. The mode superposition method.
Consider the potential @ in the next form

M
@ = dyoi - 1)
k=1
For functionse consider the following boundary problems:
2 0Pk
Ve =0, —| =0, 2
Pk on s, 2)
0 og. O
k| 5. TPk 4 gr_p, (3)
onlg ot ot

Differentiate the second relation in (3) on and substitute it in the received equality%

from the first relation. Further we present the functionse, in the next form
o, (t,x,y,2)=e"¢,(x,y,z). We come to an eigenvalue

op, _ Xi
on g (4)
As an equation for the free surface we obtain expression
o 8<Pk
€= Z K (5)
In cylindrical coordinates system we have following expressions
o (r,2,0)= @y (r, z)cosad (6)

Here o is a harmonica number. Thus, frequencies and modes of free vibrations are
considered separately for different a.
We present ¢ as of potentials of a simple and double layers [5]

2n(Py ) Ha PR P| —J;jw%ﬁds- (7)

Here S = S; U Sy; points P and P, belong to surface S. By | P — Po| we denote the
Cartesian distance between points P and Py.

With boundary conditions (2),(3), we come to system of the integral equations in
the form [6,7]:

o(1 K2 1 a(1
2mep + g@l%(?jd% _EQ;% Fdso + i{@o E(F)ds" =0, o
o(1 12 1
- J;{Ql%[;jdsl —2ngqg + Egcpo FdSO =0.

Here for convenience we denote values of potential on the free surface by ¢, and
by ¢, on the shell walls.
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We look for the solution of system (8) in form (9).
Previously, having integrated equation (8) by the variable 0, we obtain the
following system of one-dimensional singular equations.

2mp(zo)+J<p(Z)Q r(z)dr - Iq (P, Py Jodp = IW(Z)‘PPP r(2)dr3; Py €S, (9)
[o(2)(z,2)r(z)dr - qu (P, P, Jodp = Iw (P, R, )r(z)dIy; P, €S,

I
Here

Q(z,z,)= 4 {i{rz —17 +(z,—2) E,(k)-F, (k):lnr + 2o _bz Ea(k)nz};

Ja+b |2r a-b

n/2

‘P(P,PO):ﬁFm(k) E (k)z 1 4¢.? J-COSZOL\Vﬂl k?sin? ydy ;

B J~ _cosZaydy 2b

. 2 2 * . . 2
ca=p +ps+lz —z,); b=2ppy; k=——.
J1-kZsin?y o rod el o] o a+b

To define potentlals @ We use representation (9) and introduce next integral
operators:

Ay, =2ny, + ﬂ\vl (Plp) 1 B\I’o:ﬂ\lfo%dso;C\Vo:”\l/og(%jdso;
So So

0 1 o o1
Dy, ——g%%mdsp Fy, —!0 Vo dS, . (10)

Then the boundary value problem (2)-(5) takes the form

2 2
K K
A\Vl:EB\VO_CWO; Fo €Sy D\Iflzan\l/o_E Fyo: P €S-

After excluding function y; from these relations we obtain the following
eigenvalue problem

(DA'C +E)y, —AMDA'B+F)y,=0; A=2

Its solution gives natural modes and frequencies of liquid sloshing in rigid tank.
Evaluation of integral operators in (10) is carried out by the method proposed
in [8-10].

3. Reducing the dynamic problem to a system of differential equations.

Having defined the basic functions ¢, substitute them in expressions for velocity
potential (1) and for the free surface elevation (5). Then substitute the received
relations in the boundary condition on the free surface
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oD
@ x| =0.
~ + 06 +a,(t)x

So

As in cylindrical system of coordinates there is x =rcos6, we will be interested

only in the first harmonica, i.e. in a formula (6) we only consider a=1. We come to
the following equation on the surface S,

M. M o0
2 Ao +92d —+ as(t)r =0.
k=1 2 on

Due to validity of relation (4) on the surface S, the equality given above takes the
form

Mo M
de(Pk +2Xidk(pk + as(t)r =0. (11)
k=1 k=1

Accomplishing the dot product of equality (11) by o, (I =1M ) and having used

orthogonality of own modes, we receive the system of ordinary differential equations
of the second order

d +yd, +a(t)F, =0; F = (r.0.) . k=1LM. (12)
((Pk!(Pk)

Suppose that before applying the horizontal impulse the tank was at the state of
rest. Then we have to solve (12) under zero initial conditions. The operational method
is applied here to the solution of system (12).

The following values for coefficients d, (t), k=1,M are obtained:

i?_—izcos(xkt) 0<t<T
k k

dk(t):
1 1 1 1
———00s(y,t)——+—cosy, (t-T) t>T
X Ak L

Substituting these coefficients in relation (5), one can obtain the time-history of the
free surface elevation.

4. Analysis of numerical results.

We will consider the cylindrical shell with a flat bottom partially filled with the
liquid. The tank parameters are following: radius is R = 1 m, thickness is h= 0.01m,
length is L =2 m, filling level is H =0.8m.

For carrying out the calculations we accepted different numbers of the basic
functions.

Fig. 2 shows the time-history of the free surface elevation in the point B with r=1.5
(see fig. 1). Here the only one (M=1) basic function is used in (5).
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Fig.2. Time —history of the free surface at impulse loading, M=1.
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On fig. 3 the free surface elevation in the point B with r=1.5 point depending on
time is shown. Here we use three basic functions ( M=3 in (5)).

044

031

0.1

Fig.3. Time —history of the free surface at impulse loading, M=3.

Further increasing in number of basic functions didn't lead to essential change of
results.



BicHuk XapkiBcbkoro HawioHanbHoro yHiepcuteTy iMeHi B. H. Kapasina, 2017 37

Conclusion
The developed method allows us to estimate the level of the free surface elevation

at suddenly enclosed loadings. This approach will be easy generalized for elastic tanks
with elastic baffles. The geometry of tank also can be easy changed, so the results will
be obtained for conical, spherical and compound shells. It will allow to make
recommendations about installation of protective elements (covers, partitions).
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