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Abstract 
 

In this paper we consider the problem of distributing empty freight cars in a railway polygon. We show how the process can be improved 

using an optimization model. The optimization model can be characterized as a combination of minimum-cost flow problem with vehicle 

routing problem. In general, problem of empty railroad car distribution between stations and definition of way-freight train route is pre-

sented as integer combinatorial optimization problem. Computational tests show that the model can be solved in acceptable time for real 

size problems, and indicate that the model generates distribution plans that can improve the quality of the planning process. 
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1. Introduction 

Railway transport is one of the main sectors of the national econ-

omy, playing a crucial role in the implementation of foreign and 

domestic economic relations. The standard of living, the integrity 

and interchange between the regions of the country, resources, 

productivity and competitiveness depends on the efficiency and 

stability of its functioning. Therefore, it shall ensure traffic regu-

larity, high speed of transportation, high throughput and shipping 

capacity. 

New economic conditions facilitated emergence of multiple enter-

prises, which provide services for the transportation of different 

categories of goods. In order to gain competitive advantage, rail-

way transport needs to improve the quality of customer service by 

means of providing an expanded range of services. One of the key 

issues for the transportation system is prompt provision of cars of 

the required type of all shippers in accordance with the bids. Set-

tlement of such issue is complicated by the acute shortage of cars 

and their unsatisfactory status. In order to purchase a new rolling 

stock, a significant investment is required, so there occurs a task 

of rational use of the vehicles in operation. The rationalization 

option is development of new and improved existing approaches 

in carriage organization, based on the optimal use of the rolling 

stock. The most promising way to implement such approaches is 

to provide organization of the transportation process based on 

improvement of the operational planning technology in the rolling 

stock distribution at the polygons of Ukrainian railway. 

2. Literature Review 

Relevance of the problem of the distribution of empty cars is also 

evidenced by the fact that the number of scientific publications on 

this topic in recent years has not diminished. Article [1] proposes a 

mathematical model for the distribution of empty freight cars in a 

railway transport node, with regards to requirements of car owners 

for their use, operational level of loading at railway stations of the 

node and the possibility of including empty car groups into trans-

ferring, leaving trains and trains rotating by contact schedule. 

Article [2] is devoted to general task of the distribution of empty 

units of rolling stock and to classification of approaches to its 

solution, with regards to task features. In particular, it touches 

approaches to settle operational tasks aimed at distribution of 

large-scale empty cars, e.g. at the Federal Railway of Switzerland, 

whose daily distribution makes up 12,000 empty cars of 70 types. 

Article [3] also proposes a mathematical model for the distribution 

of empty cars with regards to technical parameters of the railway 

network, such as the throughput of railway stations and plots, as 

well as the business interests of rolling stock owners. Article [4] 

proposes a mathematical model with regards to requirements of 

clients as well as priority of order performance in accordance with 

their urgency. Article [5] proposes to use genetic algorithms in 

order to settle such optimization task. Article [6] proposes a meth-

od for task settlement by means of knowledge base. Article [7] 

also proposes to optimize the model of using the metaheuristic 

method of task settlement, known as the method of ant colonies. 

Article [8] proposed a method of distribution of empty cars based 

on optimization of a stochastic model. Article [9] proposes a graph 

mathematical model and a method for its optimization based on 

tabu-search aimed at task settlement. Article [10] proposes task 

settlement based on multi-commodity flow model under the crite-

ria of minimum operating costs. The general flaws in settlement of 

tasks aimed at distribution of empty cars presented in the scientific 

literature can be attributed to the fact that the tasks of distribution 

of cars and the task of planning their traffic within the network are 

usually solved separately. 
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3. Problem Statement 

The problem of the distribution of empty cars and the problem of 

determining the route of a way-freight train is expedient to be 

solved as part of one complex problem. In this formulation, the 

given problem can also be considered as a combination of two 

problems: the minimum-cost flow problem [11] and vehicle rout-

ing problem [12,13,14]. However, the solution of these two prob-

lems together and simultaneously in the composition of one com-

mon task will allow finding the solution closest to the optimal one 

and should improve the quality of operational planning in the 

railway transport. Thus, the solution of the complex problem of 

the distribution of empty cars and the determination of the train 

route can significantly complicate the decision process, but at the 

same time it can improve the quality of the solution. 

the way-freight train is designed for collection of cars from inter-

mediate stations and freight stations and their delivery. The way-

freight train is formed at the sorting and precinct stations for adja-

cent areas of local work. The cars are selected by groups for each 

station of the detachment and placed in a way-freight train in se-

quence in accordance with the location of the stations on the site.. 

At passing station, the composition of the way-freight train is 

reduced by uncoupling-unloading and delivery of empty cars and 

increases due to the hook-loading and cleaning of empty cars. One 

of the crucial factors determining the task complexity is the possi-

bility to have a significant number of alternatives in case when the 

aggregate demand for stations on empty cars, with regards to types 

of cars represented by the set D, can be satisfied as a result of the 

implementing one of a numerous possible variants of distributing 

empty cars. This situation occurs when there is an excess of empty 

cars and a set D can be represented as a subset-set S, as the aggre-

gate supply of empty cars at the stations of the polygon. However, 

even in case when the set S can be represented as a subset D, i.e. 

when the aggregate demand for cars exceeds their offer, it is al-

ways necessary to make a decision and to determine which orders 

should be met first of all and which ones should be postponed. 

Even in the case of the identity of the sets S and D, i.e. when the 

qualitative and quantitative composition of empty cars available at 

the stations of the polygon fully matches with the qualitative and 

quantitative composition of cars, which require from station of the 

polygon to carry out a daily load plan, necessity in search for an 

optimal variant from the set of possible variants of the distribution 

of empty cars does not disappear. In this case, the choice is facili-

tated by presence of numerous stations having free empty cars of 

the same type, as well as by presence of numerous stations, which 

require for a single type of car. A more general and more likely 

case occurs when set S and set D are overlapping. In such case, it 

is necessary to decide simultaneously which orders shall be met 

first of all, and at the expense of which resources. 

As a criterion of search for an optimal variant of the plan for emp-

ty car delivery, it is advisable to choose a minimum operating cost 

criterion for this plan implementation. Therefore, operating costs 

should include such indicators as train-kilometers and train-hours, 

i.e. the values corresponding to the chosen route of the combined 

train. In addition, number of shunting operations, as well as total 

duration of such operations, material costs, empty car idle stay, 

their prompt delivery to the freight fronts depends on the selected 

variant of distributing empty cars. 

Therefore, the task of delivering empty cars at the polygon, repre-

sented by an extensive network structure, is to determine which 

cars will be shifted at which stations and to select the rational 

route of the combined train. 

However, these two tasks have a direct impact on each other and 

are closely interconnected. That is, the issue “which cars will be 

shifted at which stations” depends on the train route, while the 

route of the train depends on the chosen variant of distributing 

empty cars. These tasks should be solved simultaneously in the 

framework of a single optimization model. Objective function of 

the model can be represented as follows: 

 

 

where x is a variable vector that determines the train route and 

contains a sequence of stations where there is a need for traction 

and/or detachment of empty cars; y is a variable matrix containing 

information on which cars representing the set S will be moved to 

meet the certain needs of empty cars represented by the set D, 

while the matrix elements yij  are equal to 1 if the group of cars i is 

used to meet the order j and 0 otherwise; et∙km is a unit cost per 

train-kilometer, $/km; et∙h is a unit cost per train-hour en route, 

$/hour; el∙h is a unit cost per locomotive-hour of shunting works, 

$/hour; ts is duration of shunting operations on traction and/or 

detachment of cars; d is a matrix of distances between stations of a 

polygon; nD is the cardinality of set D, representing the need for 

stations in empty cars; nS is the cardinality of set S, representing 

the excessive empty cars at the stations of the polygon; v is a route 

speed of the way-freight train; sgn(x) is a sign function;  is a 

penalty ratio for unsatisfied demand in empty cars,  is a penalty 

ratio for undistributed groups of empty cars. 

The first and second added terms correspond to the operating costs, 

which depend on the length of the route and the duration of the 

train trip, the third added term represents the costs due to the 

amount of shunting work upon the traction, detachment and trail-

ing of groups of cars, the fourth and the fifth added terms are a 

penalty functions minimizing the number of non-fulfilled orders 

for demand and supply of empty cars. Penalty function is a kind of 

soft restriction, violation of which is undesirable, but possible [15]. 

For optimization problems with conventional smooth inequality 

constraints, the penalty function method is, in general, recognized 

as an efficient method [16]. While optimizing the model, techno-

logical constraints must take into account. First of all, it is neces-

sary to prevent exceeding the maximum length of the combined 

train at any stage of the route performance, while planning:  

where k is number of route stations; ni the number of cars in the  

train at the time of departure from station i; nmax is the maximum 

allowed number of cars in the train. 

In order to avoid zero values while optimizing the target function 

and maximizing the export of empty cars, the following limitation 

should also be taken into account: 

This restriction is necessary to prevent full removal of empty cars 

from their dislocation stations in case when the aggregate demand 

for empty cars exceeds their total availability; while in case when 

the aggregate demand for empty cars is less than their total availa-

bility such restriction should secure full satisfaction of all orders. 

Only the basic restrictions are listed here. The constraint system 

can be extended in accordance with the specific conditions of the 

problem. 

As a mechanism for optimizing the created model, it is expedient 

to apply a mathematical apparatus of genetic algorithms related to 

metaheuristic search methods. The practice of its application al-

lows us to assert that it provides the opportunity to solve properly 

the tasks of combinatorial and discrete optimization, simultane-

ously with regards to logical and technological constraints, includ-

ing qualitative ones. In particular, it is used successfully for route 

search tasks [5]. One of the positive aspects of the application of 
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genetic algorithms is that they allow handling restrictions of al-

most any type and allowing it to be done simultaneously. 

In order for the application of the mathematical apparatus of ge-

netic algorithms to become possible, it is necessary to solve the 

optimization problem of the distribution of empty cars as a special 

vector called the chromosome. The elements of which this vector 

(chromosome) consists are called genes. The positions of genes, 

that is, their positions within the chromosome are called loci. The 

mechanisms of functioning of genetic algorithms are inspired by 

the mechanisms that are present in living nature, such as, for ex-

ample, generation of populations, selection, crossing, mutation. 

Thus genetic algorithm is an optimization algorithm that simulates 

the process of biological evolution [17]. Although genetic algo-

rithms are one of the best optimization mechanisms for optimizing 

tasks related to topology and graphs [18,19], there are specific 

problems associated with their application for this type of problem. 

The solution of the problem of the distribution of empty cars must 

contain variables of two types. First type variables are needed to 

present a plan for which groups of cars, that are located at the 

same stations, will be used to satisfy requests for empty cars, 

which are available at other stations. Second type variables are 

needed to represent the route of the way-freight train, which col-

lect and transport cars through the stations. Both these sets of vari-

ables must be represented by genes within the chromosome. The 

number of variables of the first type can be known in advance and 

can be unchanged during the solution of the problem. The number 

of variables of the first type is determined by the number of re-

quests for empty cars. The second type of variables must be used 

to describe the train route. However, the difficulty lies in the fact 

that if each gene represents the station number of the test site, then 

the train route options may differ not only in the order of the sta-

tions but also in the composition of the stations. And this means 

that the length of the route expressed through the station numbers 

can be different. The length of the route can be changed also be-

cause the train can visit the same station more than once. This 

means that the vector (chromosome) representing the solution of 

the problem can have different lengths. Representation of the solu-

tion of the problem in this form makes it impossible to use genetic 

algorithms of common types. Barring a few notable exceptions, 

most current genetic algorithms (GAs) use decidedly neat codings 

and operators [20]. Whether the domain is search, optimization, or 

machine learning, fixed-length, fixed-locus strings processed by 

one-  or two-cut recombination operators are the rule [20]. Alt-

hough these words were said back in 1989, they are still valid 

today. A possible way out of the situation is the use of special 

types of genetic algorithms. There are many types of genetic algo-

rithms, but the most suitable type is a genetic algorithm with vari-

able length. To solve our complex problem, the left side of the 

chromosome must be of fixed length. But since the number of 

requests for the supply and demand of empty cars may differ, the 

number of genes must be equal to the larger of these two numbers. 

Figure 1 shows an example of interpretation of a part of chromo-

some, which represents an empty car distribution plan in case of 

excess supply of cars over demand. 

 

 
Fig. 1: The structure of the chromosome and its interpretation. 

4. Computational Results 

Optimization of the proposed model was performed in Matlab 

environment (Matlab R2017A 64-bit, The MathWorks Inc., Natick, 

MA, USA). 

Figure 2 shows the convergence dynamics of the fitness (penalty) 

function during the execution time of the genetic algorithm. 

 

 
 
Fig. 2: Convergence dynamics of the fitness function in respect of the 
genetic algorithm. 

 

Figure 3 shows the way-freight train route and the optimization 

result of the proposed model: way-freight train route and empty 

car distribution plan. 

 

 
 
Fig. 3: Optimization results: way-freight train route and empty cars distri-
bution plan. 

 

Simulation was performed using a computer with an Intel Core-i5 

processor. Solution took about 2 minutes. The polygon numbered 

several dozen stations. At the polygon, only sorting, midway or 

freight stations are represented. The way-freight train passed 

through 19 stations. Figure 1 demonstrates a clear convergence of 

the algorithm, which is an indirect evidence of the fundamental 

convergence of the fitness function and the correct description of 

the mathematical model on which it was based. 
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5. Conclusions 

It is reasonable to settle the task to distribute empty cars jointly 

with definition of the route of the combined train. In such context, 

the task of transporting empty cars at the polygon having an ex-

tensive network structure is the task of discrete combinatorial 

optimization. The use of mathematical apparatus of genetic algo-

rithms as an optimization mechanism facilitates successful settle-

ment of such class tasks and finding a solution being close to the 

optimal one for the accepted period. 
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